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TruSoft-international (2004), the company produced Benoit 1.3, provided the 

following explanation for all five measurement methods including those 

discussed in Chapter Three (section 3.3.5) to show the mathematical principle 

behind the software: 

 

B.1 Box Dimension Estimation Method interface 

The box dimension is defined as the exponent Db in the relationship: 

 

Dbd
dN

1
)(       (equation 1) 

 

N(d) is the number of boxes of linear size d necessary to cover a data set of 

points distributed in a two-dimensional plane. The basis of this method is that, 

for objects that are Euclidean, equation (1) defines their dimension. One needs a 

number of boxes proportional to 1/d to cover a set of points lying on a smooth 

line, proportional to 1/d^2 to cover a set of points evenly distributed on a plane, 

and so on. 

 
This dimension is sometime called grid dimension because for mathematical 

convenience the boxes are usually part of a grid. One could define a box 

dimension where boxes are placed at any position and orientation, to minimize 

the number of boxes needed to cover the set.  It is obviously a very difficult 

computational problem to find among all the possible ways to cover the set with 

boxes of size d the configuration that minimizes N(d). Also, if the overestimation 

of N(d) in a grid dimension is not a function of scale (i.e., we overestimate N(d) 

by, say, 5% at all box sizes d), which is a plausible conjecture if the set is self-

similar, then using boxes in a grid or minimizing N(d) by letting the boxes take 

any position is bound to give the same result. This is because a power law such 

as (1) is such that the exponent does not vary if we multiply N(d) or d by any 

constant. 

 
In practice, to measure Db one counts the number of boxes of linear size d 

necessary to cover the set for a range of values of d; and plot the logarithm of 

N(d) on the vertical axis versus the logarithm of d on the horizontal axis. If the 

set is indeed fractal, this plot will follow a straight line with a negative slope that 

equals -Db. To obtain points that are evenly spaced in log-log space, it is best to 

choose box sizes d that follow a geometric progression (e.g. d = 1, 2, 4, 8,...), 

rather than use an arithmetic progression (e.g. d = 1, 2, 3, 4,...). 

 
A choice to be made in this procedure is the range of values of d. Trivial results 

are expected for very small and very large values of d. A conservative choice 

may be to use as the smallest d ten times the smallest distance between points in 

the set, and as the largest d the maximum distance between points in the set 

divided by ten. Alternatively, one may exceed these limits and discard the 

extremes of the log-log plot where the slope tends to zero. 

 

In theory, for each box size, the grid should be overlaid in such a way that the 

minimum number of boxes is occupied.  This is accomplished in Benoit by 
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rotating the grid for each box size through 90 degrees and plotting the minimum 

value of N(d).  Benoit permits the user to select the angular increments of 

rotation. 

 

 

B.2 Perimeter-Area Dimension Estimation method interface 

 

Consider an object that is a closed loop in the two-dimensional plane, e.g., an 

island. Suppose that this island is a Euclidean object, i.e., a circle. Then the area 

A and the perimeter P of such an island are related as follows: 

 

 

AArr2p     

 
2
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   (equation 2) 

 

 

 

“r”  is the radius of the circle; note that the proportionality between A and P does 

not depend on r. If the island had a fractal perimeter, then the relationships (2) 

become  

 

 

    
2/DpDp

A)a(p    

    
Dp/2

pA     (equation 3) 

 

  

Dp is the perimeter-area dimension. Indeed, if Dp = 1, one obtains the Euclidean 

case, as in (2); if Dp = 2, then the figure is space-filling because P A. If Dp is 

between 1 and 2, equation (3) shows that the perimeter of the fractal figure is 

longer than the perimeter of a Euclidean figure with the same area, as expected. 

 

In practice, to estimate Dp one measures perimeter P and area A with boxes of 

different side length d, and plots the logarithm of A on the vertical axis versus 

the logarithm of P on the horizontal axis.  If the relationship is indeed fractal, this 

plot will follow a straight line with a positive slope that equals 2/Dp. Note that 

the estimation of perimeters and areas has to be done over a range of d. 

 

 

B.3 Information Dimension Estimation Method 

This fractal dimension is often encountered in the physics literature, and is 

generally different from the box dimension. In the definition of box dimension, a 

box is counted as occupied and enters the calculation of N(d) regardless of 

whether it contains one point or a relatively large number of points. The 

information dimension effectively assign weights to the boxes in such a way that 
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boxes containing a greater number of points count more than boxes with less 

number of points. 

The information entropy I(d) for a set of N(d) boxes of linear size d is defined as 

 

)mlog(m)d(I
i

)d(N

1i
i




  (equation 4) 

 

where mi is: 

 

 

M

M
m i

i
    (equation5) 

 

Mi is the number of points in the i-th box and M is the total number of points in 

the set.  

 

Consider a set of points evenly distributed on the two-dimensional plane. In this 

case, we will have: 

 

 

2d

1
)d(N    

2dm
i
  (equation 6) 

 

so that (4) can be written as: 

 

 

)dlog(2)]dlog(d2[
d

1
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 (equation 7) 

 

For a set of points composing a smooth line, we would find: )dlog()d(I   

 

Therefore, we can define the information dimension Di as in: 

 

 

)dlog(D)d(I
i

    (equation 8) 

 

In practice, to measure Di one covers the set with boxes of linear size d keeping 

track of the mass mi in each box, and calculates the information entropy I(d) 

from the summation in (4). If the set is fractal, a plot of I(d) versus the logarithm 

of d will follow a straight line with a negative slope equal to -Di. 

 

At the beginning of this section, we noted that the information dimension differs 

from the box dimension in that it weighs more heavily boxes containing more 
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points. To see this, let us write the number of occupied boxes N(d) and the 

information entropy I(d),  in terms of the masses  mi contained in each box: 

 

    
i

0

i
m)d(N    

 )mlog(m)d(I
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i
i

   (equation 9) 

 

The first expression in (9) is a somewhat elaborate way to write N(d), but it 

shows that each box counts for one, if mi > 0. The second expression is taken 

directly from the definition of the information entropy (4). The number of 

occupied boxes, N(d), and the information entropy I(d) enter on different ways 

into the calculation of the respective dimensions, it is clear from (9) that: 

 

DiDb     (equation 10) 

 

The condition of equality between the dimensions (10) is realized only if the data  

set is uniformly distributed on a plane. 

 

 

B.4 Mass Dimension Estimation Method 

Draw a circle of radius r on a data set of points distributed in a two-dimensional 

plane, and count the number of points in the set that are inside the circle as M(r). 

If there are M points in the whole set, one can define the "mass" m(r) in the 

circle of radius r as: 

 

M

)r(M
)r(m    (equation 11) 

 

 
Consider a set of points lying on a smooth line, or uniformly distributed on a 

plane.  In these two cases, the mass within the circle of radius r will be 

proportional to r and r^2 respectively. One can then define the mass dimension 

Dm as the exponent in the following relationship: 

 

MDr)r(m    (equation 12) 

 

 

In practice, one can measure the mass m(r) in circles of increasing radius starting 

from the centre of the set and plot the logarithm of m(r) versus the logarithm of r.  

If the set is fractal, the plot will follow a straight line with a positive slope equal 

to Dm. As the radius increases beyond the point in the set farthest from the 

centre of the circle, m(r) will remain constant and the dimension will trivially be 

zero. This approach is best suited to objects that follow some radial symmetry, 

such as diffusion-limited aggregates. In the case of points in the plane, it may be 

best to calculate m(r) as the average mass in a number of circles of radius r. 
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It can be shown that the mass dimension of a set equals the box dimension. This 

is true globally, i.e., for the whole set; locally, i.e., in portions of the set, the two 

dimensions may differ. Let us cover the set with N(d) boxes of size d, and let us 

define the mass, or probability, in the i-th box mi as: 

 

    

M

M
m i

i
    (equation 13) 

 

Mi is the number of points in the i-th box and M is the total number of points in 

the set. We can now write the average mass, or probability, in boxes of size d as 

m(d), the average mi in the N(d) boxes: 
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  (equation 14) 

 

(the sum of all the masses mi is obviously one). As the operation of calculating 

the mass contained in a box of size d is the same as calculating the mass in a 

circle of radius r, we can write our definition of mass dimension (12) in terms of 

d rather than r: 

 

    
MDd)d(m    (equation 15) 

 

By using (4) and re-arranging terms, we obtain: 

 

    
MDd

1
)d(N    (equation 16) 

 

This is the definition of the box dimension; thus, the mass dimension equals the 

box dimension. 

 

 

B.5 Ruler Dimension 

Consider the problem of estimating the fractal dimension of a jagged, self-similar 

line, the typical example being a coastline.  Define N(d) as the number of steps 

taken by walking a divider (ruler) of length d on the line, the ruler dimension Dr 

is defined as:  

 

    
Dr-dN(d)    (equation 17) 

 

The basis of this method is as follows: if the line is Euclidean, Dr = 1, then the 

length of the line will be a constant independent of d.   Note that this is bound to 

be true for values of d sufficiently small. For example, the perimeter of a circle 

measured by a ruler of length d will be constant when d is much less than the 
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radius of the circle. At the other extreme, if the line completely fills space, Dr = 

2, i.e., the length of the line is linearly related to the length of the ruler. This can 

be shown to be true by equating the measured length of the line N(d) with the 

number of boxes needed to cover the line N(d) times d: When Dr = 2, the 

number of filled boxes is proportional to 1/d^2, and the line fills the two-

dimensional space.  One can show the formal equivalence of the ruler and box 

dimension. 

 

In practice, to obtain Dr one counts the number of steps N(d) taken by walking a 

divider (ruler) of length d on the line, and plot the logarithm of N(d) versus the 

logarithm of d. If the line is indeed fractal, this plot will follow a straight line 

with a negative slope that equals -Dr. It should be noted that in general, a ruler of 

length d will not cover exactly the line, but we will be left with a remainder. 

Benoit keeps this remainder and therefore has non-integer values of N(d). 

 


